
Name: __

Each question is worth 5 points. Show your work in the space provided and **put a box around your final answer**. Answers should be simplified, but can include logarithmic and/or exponential expressions. Good luck!

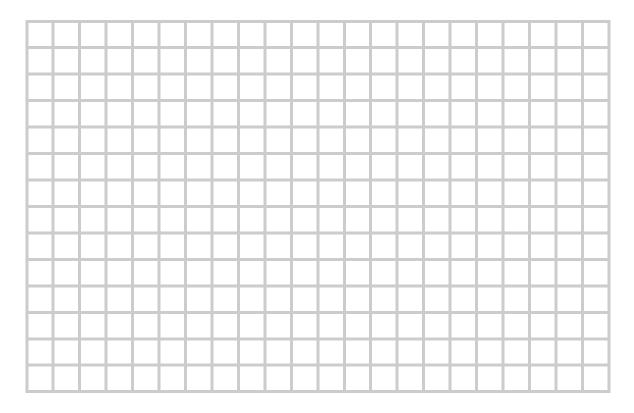
1. Sketch the graph of $f(x) = 2 - \sqrt{x+1}$. Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. State the domain and range using interval notation.

2. Suppose $f(x) = 2x^2 + x$ and g(x) = 3 - x. Find f(g(x)) and g(f(x)).

3. Let f be the one-to-one function $f(x) = \frac{3}{x-4}$. Find $f^{-1}(x)$.

4. Use the following table to evaluate $g(f^{-1}(2))$.

5. Consider the quadratic function $q(x) = x^2 - 12x + 40$. Use "completing the square" to write q(x) in standard form. Then determine the maximum/minimum value of q(x) and state whether it is a maximum or a minimum.

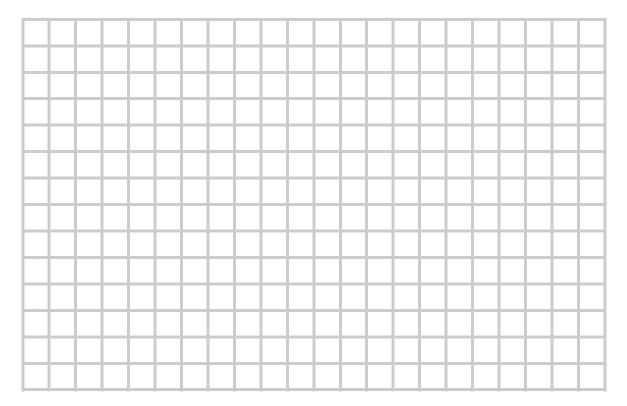

6. Find the maximum/minimum value of $f(x) = -\frac{x^2}{3} + 2x + 7$ and state whether it is a maximum or minimum.

7. Let $y = -7x^5 - x^4 + 5x + 2$. Describe the end behavior of f by filling in the blanks:

As
$$x \to -\infty$$
, $y \to \underline{\hspace{1cm}}$.

As
$$x \to \infty$$
, $y \to$ _____.

8. Sketch the graph of the polynomial $P(x) = -\frac{2}{3}x^2(x-4)$. Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. Make sure your graph exhibits the proper end behavior and correctly shows where P(x) is positive/negative.

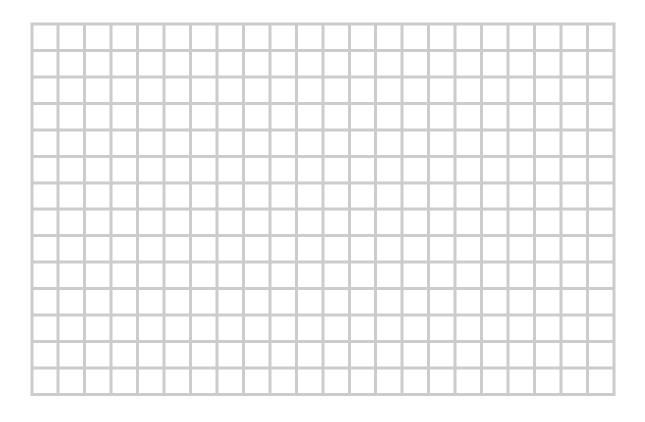


9. Solve: $7^{1-2x} = 7^{3x-5}$.

10. Solve $8e^{x/3} = 40$.

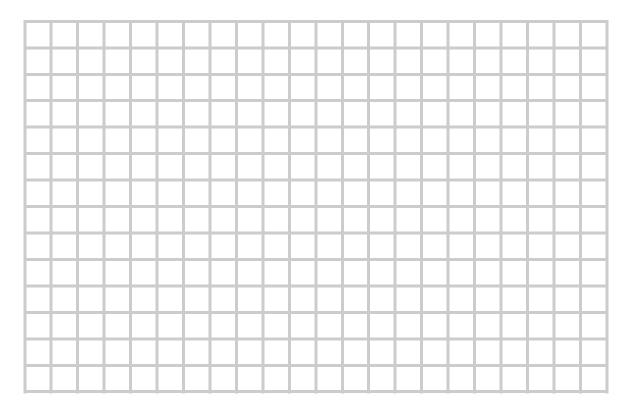
11. Solve: $\frac{50}{1+e^{-x}} = 4$.

12. Sketch the graph of $f(x) = 2 + 4^{-x}$. Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. State the domain and range using interval notation.


13. Evaluate $\log_2\left(\frac{1}{32}\right)$.

14. Use log laws to evaluate $3\ln(2) + 2\ln(3) - \ln(72)$.

15. Sketch the graphs of all three of the following functions on the same set of axes below. Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes.


$$f(x) = x$$
$$g(x) = e^x$$

$$h(x) = \ln(x)$$

16. Let $f(x) = \ln(1 - 6x)$. State the domain of f using interval notation.

17. Sketch the graph of $f(x) = -\log_5(x-3)$. Label any/all x-intercepts, y-intercepts, horizontal asymptotes, and vertical asymptotes. State the domain and range using interval notation.

18. Solve: $2\ln(x) = \ln(2) + \ln(3x - 4)$.

19. Solve: $\log_5(x+1) - \log_5(x-1) = 2$.

20. Solve: $\log(x+2) + \log(x-1) = 1$.