City College of NY: Department of Mathematics Mathematics 20500 (Elements of Calculus) Syllabus

COURSE #: 20500 COURSE TITLE: Elements of Calculus

CATEGORY: Introductory, part of sequence Math 205, Math 209

TERM OFFERED: Every Term

PRE-REQUISITES: Grade C or higher in Math 19500 pre-calculus; or placement by the department. Credit will be given for only one of Math20100 or Math20500.

HOURS/CREDITS: 4 hrs/wk; 4 credits

DATE EFFECTIVE: 01/01/13 COURSE COORDINATOR: Akin

CATALOG DESCRIPTION

Limits,

derivatives, rules of differentiation, grap sketching, maximum and minimum problems, related rates, exponential anlogarithmic functions, differential equati anti-derivatives, area, volume

Text: Brief Applied Calculus, Stewart and Clegg, Brooks-Cole

Section Topics Suggested # of Hours

1.1, 1.2	Review of functions, including piecewise defined funct	ions
and composition	on of functions (Omit transformations of functions)	1
1.3	Lines and Linear Models: Go through page 33.	
Include some l	inear model verbal problems.	1
1.5, 1.6	Exponential Models and Logs: Introduce <i>e</i> and use	
	define logs. Note the change of base formula on page	
	rive it from the formula $\log_a b$. $\log_b x = \log_a x$ showing	that
a raised to eacl	n of these powers yields x).	2
2.1, 2.2	Rates of change and Limits.	2
2.3	Limit definition of the derivative. Tangent lines.	
Go through pag	ge 106.	2
2.4,pp.119-12	3Leibniz notation and higher derivatives	1
3.1	Initial derivative formulas, including e ^x	2
3.2	Linear approximation and marginal cost.	1
3.3	Product and quotient rules.	2
3.4	Chain rule.	2
3.5	Implicit and Logarithmic differentiation. Include	
derivation of the derivative of $\ln x$.		
3.6	Exponential growth and decay. 2	
4.1	Related rates.	2
4.2	Maxima and minima. Include the	
closed interval case.		2
4.3, 4.4	Curve sketching.	2 2
4.5	Curve sketching	2
4.6, 4.7	More optimization problems	2
5.1, 5.2	Introducing the integral, antiderivatives and the Funda	mental
Theorem of Calculus.		
5.4	u-substitution	3
6.1	Area between curves	2
6.2, 6.3	Other applications of integration.	2

Revised for Fall, 2013

COURSE LEARNING OUTCOMES

The student is expected to acquire the skills which are presented in the text and demonstrated by the instructor in class. These skills include the following, with associated departmental learning outcomes(see below):

1 Use limits to calculate derivatives	a,b.e1.e2
2.Differentiate algebraic, logarithmic and exponential functions	a,b,e1,e2
3. Solve related rates problems	a,b,c
4. Apply methods of calculus to curve sketching	a, b
5 Solve maximum and minimum problems	a,b,c,e1,e2
6. Use exponential functions to model growth and decay	a, c
7 Antidifferentiate polynomial, logarithmic and exponential functions	a,b,c,e1,e2
8 Use calculus to find areas	a,b

COURSE ASSESSMENT TOOLS

Please describe below all assessment tools that are used in the course. You may also indicate the percentage that each assessment contributes to the final grade.

- 1. class work and 2 or 3 in class tests (60%)
- 2. departmental final exam (40%)

DEPARTMENTAL LEARNING OUTCOMES (to be filled out by departmental mentor)

The mathematics department, in its varied courses, aims to teach students to

- a. perform numeric and symbolic computations
- b. construct and apply symbolic and graphical representations of functions
- c. model real-life problems mathematically
- d use technology appropriately to analyze mathematical problems
- e. state (e1) and apply (e2) mathematical definitions and theorems
- f. prove fundamental theorems
- g. construct and present (generally in writing, but, occasionally, orally) a rigorous mathematical argument.

Course Supervisor: Prof. Ethan Akin