Please show all work and **box your final answers**. If you need more room, you may use the backs of the pages. Calculators are not allowed. Good luck!

- 1. Give equations for the spheres with center (2, -5, 3) that touch
 - (a) (4 points) the xz-plane.

(b) (4 points) the origin.

2. (6 points) Find the angle between the vectors $\vec{a} = \langle \sqrt{3}, 1 \rangle$ and $\vec{b} = \langle 1, \sqrt{3} \rangle$.

3. (6 points) Let \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{d} be vectors. State whether each of the following expressions is meaningful or not. If yes, state whether the result is a scalar or a vector.

(a)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

(b)
$$(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$$

(c)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$$

(d)
$$\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$$

(e)
$$(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$$

(f)
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$$

4. (6 points) Find a *unit vector* that is orthogonal to the vector $\vec{v} = \langle 1, 2, 3 \rangle$.

- 5. Consider the three points P(1,0,1), Q(-2,1,3), and R(4,2,5).
 - (a) (6 points) Find a vector orthogonal to the plane containing $P,\,Q,$ and R.

(b) (4 points) Find the area of the triangle with vertices P,Q, and R.