1. Let $f(x,y) = 1 + x \ln(xy - 5)$. Explain why f is differentiable at the point (2,3). Then find the linearization L(x,y) of the function at that point.

- 2. Use differentials to estimate the amount of tin in a closed tin can with diameter $8~\mathrm{cm}$ and height $12~\mathrm{cm}$ if the tin is $0.04~\mathrm{cm}$ thick.
- 3. Let

$$P = \sqrt{u^2 + v^2 + w^2}, \quad u = xe^y, \quad v = ye^x, \quad w = e^{xy}.$$

Use the Chain Rule for several variables to find $\frac{\partial P}{\partial x}$ and $\frac{\partial P}{\partial y}$ when x = 0 and y = 2.

- 4. Find the maximum rate of change of $f(x, y, z) = \tan^{-1}(xyz)$ at the point (1, 2, 1) and the direction in which it occurs.
- 5. After drifting, the height h in inches of the snow at point (x,y) in a parking lot is

$$h(x,y) = 4 + x^2 - \ln(y^2 + 1).$$

- (a) Find the rate at which the height of the snow at the point (3,1) changes per unit distance in the direction toward the point (4,0).
- (b) Suppose a person is walking in the parking lot and their position at time t is given by the following parametric equations.

$$x = 2t$$
, $y = \sin t$, $0 \le t$

Find the rate at which the height of the snow the person is walking through is changing per unit time when the person is at the point $(\pi, 1)$.

6. Find the absolute maximum and absolute minimum value of

$$f(x,y) = x^4 + y^4 - 4xy + 2, \quad 0 \le x \le 3, \quad 0 \le y \le 2.$$

7. Find all local maxima, local minima, and saddle points for

$$f(x,y) = 2x^4 - x^2 + 3y^2.$$

- 8. Find the volume of the solid in the first octant bounded by the cylinder $z = 16 x^2$ and the plane y = 5.
- 9. Find the volume of the solid that lies below the surface $z = x^2y$ and above the triangular region in the xy-plane with vertices (0,0), (4,2) and (1,5).
- 10. Evaluate the following double integral over the region D.

$$\iint_D \frac{x^2 \sin(x^2 + y^2)}{x^2 + y^2} dA, \quad D = \{4 \le x^2 + y^2 \le 9, y \ge 0\}$$