Homework 5

Sections 3.4-6 Due Monday 11/7

1. (8 points) Let p be the unique solution of the equation

$$\sin^2 x = x + \frac{1}{x^2}.$$

Assuming x_0 is sufficiently close to p, use Newton's method of root-finding to give an iterative equation such that x_n converges to p.

Scurious to the GIVEN EQUATION ARE ROOTS OF

$$2(x) = x + \frac{1}{x^2} - \sin^2 x.$$

Newfold's Method shows that Roods of a are stable fixed Polys of $f(x) = x - \frac{3^{(x)}}{3^{(x)}}$.

of
$$f(x) = x - \frac{3(x)}{3(x)}$$

Note: $a'(x) = 1 - \frac{2}{x^3} - 2 \sin x \cos x$

ITENATIVE EQUATIONS IS $X_{n+1} = f(x_n)$,

i.e.
$$X_{n+1} = X_n - \frac{X_n + \frac{1}{X_n^2} - SiN^2 X_n}{1 - \frac{2}{X_n^3} - 2 SiN X_n \cos X_n}$$

2. (10 points) Use Newton's method of root-finding to find increasingly better apoproximate solutions x_1 , x_2 , x_3 , and x_4 to the equation

$$g(x) = x^2 - 7 = 0,$$

starting with initial guess $x_0 = 3$. What is $\lim_{n \to \infty} x_n$?

Newton's method: $x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$

Here,
$$3(x) = x^{2} - 7$$
, $3(x) = 2x$

$$\therefore x_{n+1} = x_n - \frac{x_n^2 - 7}{2x_n}$$

LIM Xn IS THE POSITIVE ROOT OF 3, $\sqrt{7}$

<	1700 HW 5				
	А		В		С
1	Newtown's Method for $g(x) = x^2 - 7$				
2	n		x_n		
3		0	3		
4		1	2.666666667		
5		2	2.645833333		
6		3	2.645751312		
7		4	2.645751311		
^					

3. (8 points) Use Newton's method of root-finding to give an iterative equation $x_{n+1} = f(x_n)$ and an initial value x_0 such that x_n converges to $a^{1/p}$, where a and p are both integers ≥ 2 .

Hint: Let $x = a^{1/p}$. Then we are trying to find a solution to $x^p = a$. To find the initial value x_0 , you could use a cobwebbing diagram to visualize the basin of attraction of the fixed point of Newton's equation $x_{n+1} = f(x_n)$.

Let $x = a^{1/p}$. We must approximate x. $x^{p} = a$ $x^{p} - a = 0$.

Set 3(x) = x?-a. WE MUST FIND A (POSITIVE, REAL) REAL) REAL) REAL)

Memoni Mehoo: $X^{u+1} = X^u = \frac{2(x^u)}{2(x^u)}$

 $X_{n+1} = X_n - \frac{x_n^{\frac{n}{r}} - \alpha}{\rho x_n^{\frac{n}{r}-1}}$

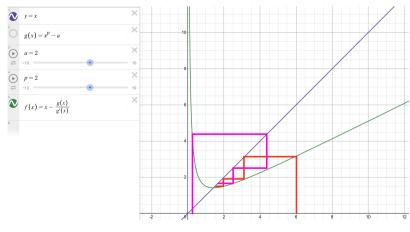
cau this f(xn)

IF WE consider the Graph $y = \sqrt{x} = x^{9} - a$,

where a ξ p are Both with ξ ξ ξ . We see that $X_n \to \alpha^{1/p}$ for all $X_n \to 0$.

FOR EXAMPLE, X = 1 OR X = A.

(No Justification is needed foil there of X.)



Newton's Method
Follows TANGENT
LINES TO FIND BETTEL
APPROXIMATIONS TO A
ROOT OF 3.

ALTERNATIVELY, COBWEBBIDG SHOWS

BASIN OF AMMACIONS OF FIXED POINT

OF f 15 (0,00).

- 4. Find all fixed points of f and then use them to help find all points of period 2.
 - (a) (8 points) $f(x) = -x^2 + 2x + 2$

Fixed Points:
$$f(x) = -x^2 + 2x + 2 = x$$

 $x^2 - x - 2 = 0$
 $(x - 2)(x + 1) = 0 = x = -1, 2$

Pows of Penico 2: f2(x) = -(-x2+2x+2)2+2(-x2+2x+2)2+2 = x

Note THAT FIXED POINTS OF FARE SOLUTIONS TO THIS EQ. I.E. ROOTS OF THIS POLYDOMIAL.

$$\begin{array}{r}
x^{2} - 3x + 1 \\
x^{4} - 4x^{3} + 2x^{2} + 5x - 2 \\
\underline{-(x^{4} - x^{3} - 2x^{2})} \\
-3x^{3} + 4x^{2} + 5x - 2 \\
\underline{-(-3x^{3} + 3x^{2} + 6x)} \\
x^{2} - x - 2 \\
\underline{-(x^{2} - x - 2)}
\end{array}$$

$$x^{4} - 4x^{3} + 2x^{2} + 5x - 2 = 0$$

$$(x^{2} - x - 2)(x^{2} - 3x + 1) = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

(b) (8 points)
$$f(x) = \frac{2}{x} - x$$

Fixed Points of
$$f: f(p) = p$$

$$\frac{2}{p} - p = p \implies 2 - p^2 = p^2 \implies p^2 = 1$$

$$p = \pm 1.$$

5. (8 points) Given that a = 1 is one point of a 2-cycle of $f(x) = 2 - 2^x$, find the other point b and determine the stability of the cycle.

$$a = \frac{f}{2 - crue} b$$

$$b = f(a) = f(i) = 2 - 2' = 0$$

$$a = f(b) = f(0) = 2 - 2^{\circ} = 1$$

$$f'(x) = 2^{x} \ln 2$$

$$f'(0) = \ln 2$$

$$|f'(0)f'(1)| = |2(ln2)^2| \approx .9609 < 1$$

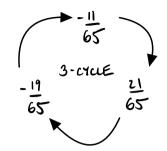
=> $\{0,13 \text{ is a sable 2-crite}\}$

6. (8 points) For f(x) = 1 - 4|x|, $p_1 = -11/65$ is a point of an *m*-cycle. Find all other points of that cycle, and determine its period and stability.

$$\rho_{2} = f(\rho_{1}) = 1 - 4 | -1\%5 | = 21\%5$$

$$\rho_{3} = f(\rho_{1}) = 1 - 4 | 21\%5 | = -1\%5$$

$$\rho_{4} = f(\rho_{3}) = 1 - 4 | -1\%5 | = -1\%5 = \rho_{1}$$



$$f'(x) = \begin{cases} -4 & \text{if } x > 0 \\ 4 & \text{if } x < 0 \end{cases}$$

$$|f'(P_1)f'(P_2)f'(P_3)| = 4^3 > 1 \Rightarrow \begin{cases} -\frac{11}{65}, \frac{21}{65}, -\frac{19}{65} \end{cases}$$
 is an unstable 3-cycle.

7. (a) (6 points) Suppose $f^4(p) = p$ for some point p and some function f(x). What are the possible periods that p might have?

SINCE THE PERIOD OF P IS (BY DEFINITION) THE SMULLET POSITIVE WELLER m such that fm(p)=p, we have m = 4.

But m=3 is impossible:

IF
$$f^{3}(p) = p$$
 THEN $p = f^{4}(p) = f(f^{3}(p)) = f(p)$.
 $\therefore f(p) = p \notin SO p$ is a fixed Point.

: Possible Penius of p are 1,2,4. Connect Answer Without

Proof is OK.

(b) (6 points) Suppose $f^{12}(p) = p$ for some point p and some function f(x). What are the possible periods that p might have?

Now the Penico on of the Point p is no GREATER THAN 12.

IF T > O THEN THIS SHOWS THE PERIOD OF P IS NO GREATER THAN T. THAT IS, M & r.

But r c m , countrollins ====

THUS C = 0 & THE PERIOD IN IS A DIVIDIN OF 12.

THAT IS, POSSIBLE PERIODS OF P ARE 1,2,3,4,6,12. CORRECT ANSWER WITHOUT PROOF IS OK.

8. (10 points) Find the interval of stability of the fixed point 0 for r > 0 of $f_r(x) = rx^2(1-x)$.

THE FIXED POWN O is STABLE FOR ALL VALUES OF (>0 SUCH THAT $|f_{\epsilon}'(c)|$ < 1.

 $f_{c}'(x) = 2rx - 3rx^2 \Rightarrow |f_{c}'(0)| = 0$ (1 always.

: INGENIAL OF SUBJECTY FOR O IS TO

9. (10 points) Find all positive fixed points of $f_c(x) = \frac{cx^2}{x^2 + 1}$ and their intervals of existence for c > 0.

Fixed Points: some
$$\frac{cx^2}{x^2+1} = x = \sum cx^2 = x^3 + x$$

$$0 = x^3 - cx^2 + x = x(x^2 - cx + 1)$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

$$= \sum x = 0 \text{ or } x = \frac{c \pm \sqrt{c^2 - 4}}{2}$$

THE POSITIVE FIXED POINT $\frac{C^{\frac{1}{2}}\sqrt{c^{2}-4}}{2}$ Exists For All $c \ge 2$.

10. (10 points) Find all 2-cycles of $f_a(x) = -ax^3$ and their intervals of existence and stability for a > 0.

Fixed Points of
$$f_{\alpha}(x) = -\alpha x = x = x = 0 = x(1 + \alpha x^2) = x = 0$$

$$f_{\alpha}(x) = -\alpha x = x = x = x = 0$$

$$f_{\alpha}(x) = -\alpha x = x = x = x = 0$$

Fixed Points of
$$f^2$$
: $f_{\alpha}^{\, L}(x) = -\alpha (-\alpha x^3)^3 = x = 5 \alpha^4 x^9 = x$

$$0 = x(1 - \alpha^4 x^8) = 5 x = 0 \quad (\text{Fixed Point of } f)$$

$$x^8 = \alpha^{-4} = 5 x = \pm \alpha^{-1/2} \quad \text{i.e. } x = \pm \frac{1}{\sqrt{\alpha}}$$

: 2 crue
$$\{\frac{1}{\sqrt{a}}, -\frac{1}{\sqrt{a}}\}$$
 Exist For All $a > 0$.

stability:
$$f_{\alpha}(x) = -3\alpha x^2$$

Last edited 11/08/2022 Page 11 adamski@fordham.edu