Fordham University

Mathematical Modeling

Math 1700-R01

Exam 2

1. Consider the non-linear model

Tpy1 = (z, — 8)% + 8.

(a) (8 points) Give an exact solution for z,.
Hint: You might want to first find an exact solution for u, = x, — 8.

(b) (8 points) Use the exact solution from part (a) to determine all possible values of lim z, and to
n—o0
find the basin of attraction of any stable fixed point(s).
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2. (12 points) Given that p =1 is a fixed point of the equation

1
Tpt1 = g(xi — 3z, + 5),

use the derivative to determine the stability of p = 1 and to state whether solutions that begin near

b 1 oscillate or not.
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3. (12 points) Let p be the unique solution to the equation

sinx = Inz.
Assuming z is sufficiently close to p, use Newton’s method of root-finding to give an iterative equation

ZTnt1 = f(z,) such that z,, converges to p.
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4. (16 points) Find the 2-cycle of
flx) = 22— 2x
and determine if it is stable or unstable.
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5. (12 points) Suppose there are

e 2 solutions to f(z) = =z,
e 8 solutions to f*(z) = z,
e 8 solutions to f3(z) = z, and

e 20 solutions to f%(z) = =.

How many 2-cyles, 3-cycles, and 6-cycles does f have?
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6. (16 points) Consider the parametrized family
fr(z) =2vr — 2,

Find the positive fixed point(s) and the interval of existence and interval of stability for each.

r > 0.
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7. In this question we will investigate the infinite continued fraction below.
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(a) (4 points) Find a function f such that z,4+1 = f(xn).

(b) (4 points) Find the positive fixed point p of f and use f’ to determine whether it is stable or
unstable.

(¢) (4 points) The graphs y = f(z) and y = z are shown below. Use cobwebbing to determine the
basin of attraction of the positive fixed point p.

(d) (4 points) Given zo > 0, what is the limit nh_)mcxJ Zn?

Note: This is precisely the value of the continued fraction (1)
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