7.3 Basic Counting Priciples

Example/Discussion Problems

- 1. A sandwich shop lets customers create their own sandwich by repeatedly making choices from a selection of options as follows.
 - (a) Choose a type of bread: white, wheat, rye, sourdough.
 - (b) Choose a meat: tukey, beef, tuna.
 - (c) Choose a cheese: Cheddar, none.

How many different sandwiches can one order at this shop?

Multiplication Principle

Suppose *n* choices must be made, with

 m_1 ways to make choice 1,

 m_2 ways to make choice 2,

and so on, with

 m_n ways to make choice n.

Then there are

 $m_1 \cdot m_2 \cdot \cdots \cdot m_n$

different ways to make the entire sequence of choices.

- 2. How many distinct 10 digit phone numbers exist? Note that neither the 1st nor 4th digit of a 10-digit phone number can be 0 or 1?
- 3. How many distinct 7 character license plates exist if the first 3 characters must be letters, and the last 4 characters must be digits?
- 4. How many distinct 7 character license plates exist if the first 3 characters must be letters, and the last 4 characters must be digits, and characters that appear next to each other must be different?
- 5. How many distinct 7 character license plates exist if the first 3 characters must be letters, and the last 4 characters must be digits, and no character can appear more than once?
- 6. A graphic designer has 256 colors from which to choose one color as a background, one color for largy type, and one color for small type. How many ways can this be done? (Do the choices need to be different?)
- 7. How many ways are there for a club with 15 members to choose one president, one vice-president, and one treasurer?
- 8. A mail deliverer needs to deliver packages to 11 different addresses. In how many different orders can they deliver the packages?

John Adamski, PhD 1 adamski@fordham.edu

Factorial Notation

For any natural number n,

$$n! = n(n-1)(n-2)\cdots(3)(2)(1).$$

Math 1108-R11

Also, by definition,

$$0! = 1.$$

Permutations

If P(n, r) (where $r \le n$) is the number of permutations of n elements taken r at a time, then

$$P(n,r)=\frac{n!}{(n-r)!}.$$

P(n, n)

The number of permutations of a set with n elements is n!; that is P(n, n) = n!.

- 9. How many ways are there to select 3 books from a collection of 8 books and arrange them on a shelf from left to right?
- 10. There are 8 democratic candidates running for mayor of NYC. On June 22nd, registered democrats will go to the polls and rank their top 5 choices for mayor. How many ways can registered democrats vote in the mayoral primary?
- 11. How many distinct ways can all of the letters in the following words be arranged?
 - (a) SWIMMING
 - (b) BOOKKEEPER
 - (c) MISSISSIPPI

If the n objects in a permutation are not all distinguishable—that is, if there are n_1 of type 1, n_2 of type 2, and so on for r different types, then the number of **distinguishable permutations** is

$$\frac{n!}{n_1! n_2! \cdots n_r!}.$$

12. A *derangement* of n ordered objects is a rearrangement such that no object ends up in its original position. For example, the three-letter word CAT has two derangements: ATC and TCA. How many derangements does an n-letter word have when all n letters are distinct?