graphically:

Matched Problem 1 Solve the following system of linear inequalities

$$3x + y \le 21$$
$$x - 2y \le 0$$

Solution REGION

WE CONSIDER ONLY SYSTEMS < (NOT > OR <)

DEFINITION Corner Point

A corner point of a solution region is a point in the solution region that is the intersection of two boundary lines.

Matched Problem 2 Solve the following system of linear inequalities graphically and find the corner points:

$$5x + y \ge 20$$

$$x + y \ge 12$$

$$x + 3y \ge 18$$

$$x \ge 0$$

$$y \ge 0$$

$$(what IF \in \frac{2}{5} ?$$

(UNBOUNDED)

Bounded

Note: Not all intersections CORNER POINTS OF Sourius Recious.

DEFINITION Bounded and Unbounded Solution Regions

A solution region of a system of linear inequalities is **bounded** if it can be enclosed within a circle. If it cannot be enclosed within a circle, it is **unbounded**.

Solve the systems in Problems 29–38 graphically and indicate whether each solution region is bounded or unbounded. Find the coordinates of each corner point.

29.
$$2x + 3y \le 12$$
 $x \ge 0$

30.
$$3x + 4y \le 24$$

 $x \ge 0$
 $y \ge 0$

$$y \ge 0$$

32.
$$6x + 3y \le 24$$

 $3x + 6y \le 30$
 $x \ge 0$

31.
$$2x + y \le 10$$
 $x + 2y \le 8$

$$x \ge 0$$

$$x \ge 0$$

$$y \ge 0$$

$$x \ge 0$$

$$y \ge 0$$

33.
$$2x + y \ge 10$$

$$\begin{array}{l}
 x + y \ge 10 \\
 x + 2y \ge 8 \\
 x \ge 0 \\
 y \ge 0
 \end{array}$$
34. $4x + 3y \ge 24$
 $3x + 4y \ge 8$
 $x \ge 0$
 $y \ge 0$

$$y \ge 0$$

 $y \ge 0$

35.
$$2x + y \le 10$$
 $x + y \le 21$ $x + y \le 7$ $x + 2y \le 12$ $x \ge 0$ $x + 3y \le 21$ $x \ge 0$

Applications

- 51. Water skis. A manufacturing company makes two types of water skis, a trick ski and a slalom ski. The trick ski requires 6 labor-hours for fabricating and 1 labor-hour for finishing. The slalom ski requires 4 labor-hours for fabricating and 1 labor-hour for finishing. The maximum labor-hours available per day for fabricating and finishing are 108 and 24, respectively. If x is the number of trick skis and y is the number of slalom skis produced per day, write a system of linear inequalities that indicates appropriate restraints on x and y. Find the set of feasible solutions graphically for the number of each type of ski that can be produced.
- **52. Furniture.** A furniture manufacturing company manufactures dining-room tables and chairs. A table requires 8 laborhours for assembling and 2 labor-hours for finishing. A chair requires 2 labor-hours for assembling and 1 labor-hour for finishing. The maximum labor-hours available per day for assembly and finishing are 400 and 120, respectively. If x is the number of tables and y is the number of chairs produced per day, write a system of linear inequalities that indicates appropriate restraints on x and y. Find the set of feasible solutions graphically for the number of tables and chairs that can be produced.

WHERE DO THEY BUILD FENCES? 4?5? GIVEN 3 FARMERS,

 $y \ge 0$