V	Indule	5:	countino	(sections	73	3 and	7.4)	
·	louule	○ .	Courning	1360110113	(J allu	(• – ()	

oproduct rule

permutations chase robsects from n usseds calber nations $n_r^2 = \frac{n!}{(n-r)!}$

Combinations chase r observes than a sesseds albeit observe hatter $nC_r: \frac{nP_r}{r!}: \frac{n!}{c!(n-r)!}$

Experiment takes place in K stages

 1^{st} stage can result in n_1 lossible coloures 2^{nd} stage can result in n_2 lossible coloures 3^{rd} stage can result in n_3 lossible coloures

L'H stage can result in n_k lossière adames

Then there are $n_i n_2 n_3 \cdots n_k$ Pasière atames

FUT THE EXPERIMENT (SIZE OF SAMPLE SINCE)

- 1. A restaurant serves 12 side dishes 3 potato dishes, 5 vegetable dishes, and 4 pasta dishes. Customers are allowed to shoose three distinct side dishes.
 - (a) How many possible side dish combinations can one order at this restaurant?
 - (b) How many possible side dish combinations can one order at this restaurant if you have to order 1 potato dish, 1 begetable dish, and 1 pasta dish?
 - (c) How many possible side dish combinations can one order at this restaurant if you have to order exactly two vegetable dishes?
 - (d) How many possible side dish combinations can one order at this restaurant if you have to order at least two vegetable dishes?

(b) Product nuce: 3 × 5 × 4 : 60

(c)
$$1^{51}$$
 RCK 2 veg. DISHES: $5C_2 = 10$?
 2^{nd} PICK 1 NOW-VEG. DISH: $_7C_1 = 7$

(d) 1^{51} flux 2 veg. dishes: $5C_2 = 10$? $10 \times 10 = 100$ 2^{-d} Picic 1 additional dish: $_{10}C_1 = 10$

2. A club with 22 members must select a president, a vice-president, and secretary from among themselves. How many ways can they do this?

$$\frac{22}{\rho} \times \frac{21}{\sqrt{\rho}} \times \frac{20}{\sqrt{20}} = \frac{\rho}{20} = 9240$$

3. A club with 25 members - 17 women and 8 men - must select 5 members to attend a club fair. If they want to send 3 women and 2 men, how many possible ways can they do this?

$$\frac{17^{\circ} 3}{\text{CHAUSE Women}} \times \frac{8^{\circ} 2}{\text{CHOUSE MEN}} = 680 \times 28$$

$$= 19,040$$

$$= 19,040$$

Module 6: Sets and Probability (sections 7.2, 8.1, 8.2, 8.3)

n(A) = 3

Sets, elements, subsets, empty set, notation, set builder notation

A = { a, b, c }

Intersection, union, complement, "mutually exclusive"

{a,c} = A (subser)

Addition rule

ØεY

EVENT ELEMENT BELONGS TO A

🔘 Venn diagram

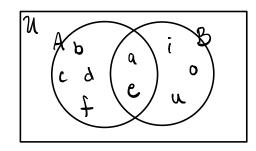
} } = \$ EMPHY SET

Listing/visualizing simple events (all equally likely)

Calculating probabilities using P(A)=n(A)/n(S)

$$\begin{cases} x + 1 & x \text{ is a possible indepen } \\ ust shaues 4 elements: \\ |^{1}+|=2 \\ |^{2}+|=5 \\ |^{3}+|=10 \\ |^{4}+|=17 \end{cases}$$

4. Let


$$A = \{a, b, c, d, e, f\} \tag{1}$$

$$B = \{a, e, i, o, u\} \tag{2}$$

(a) Find $A \cap B$. $\{a, e\}$

(b) Find $A \cup B$. = \ \(\bar{a}, \bar{b}, \cdot \def \) i, \(\omega \)

- (c) List all subsets of $A \cap B$.
- (d) How many subset of B exist?
- (e) If the universal set U is the 26-letter alphabet, how many elements are in $A' \cap B'$?

ADDITION RULE:

(c) AnB: {ae} - creat subsets of AnB in n(AnB) sters

(d) # subsets of B?
$$2^{n(B)} = 2^{-3}2$$

- 6. A family has two children.
 - (a) What is the probability that both children were born on the weekend?
 - (b) Given that neither child was born on a Monday, what is the probability that both children were born on the weekend?
 - (c) Are the events "both children were born on the weekend" and "neither child was born on a Monday" inedependent events?
 - (d) Are the events "both children were born on the weekend" and "neither child was born on a Monday" mutually exclusive events?

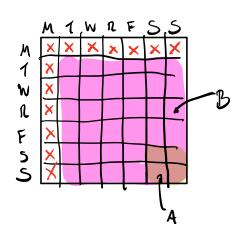
- Planb) = P(B)Pla1B)

Multiplication rule

Ylan B) = Y(B) Ylan B)

Plan B) = Plan B) =

Bayes' formula


6. A family has two children.

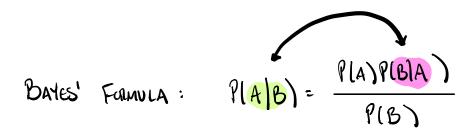
(a) What is the probability that both children were born on the weekend?

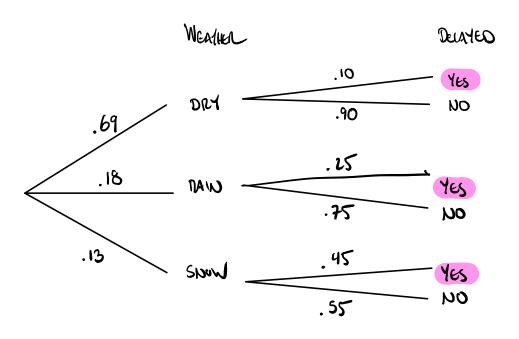
(b) Given that neither child was born on a Monday, what is the probability that both children were born on the weekend?

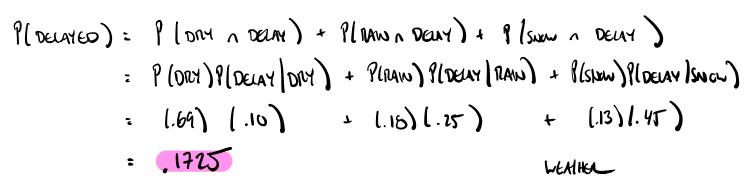
(c) Are the events "both children were born on the weekend" and "neither child was born on a Monday" inedependent events?

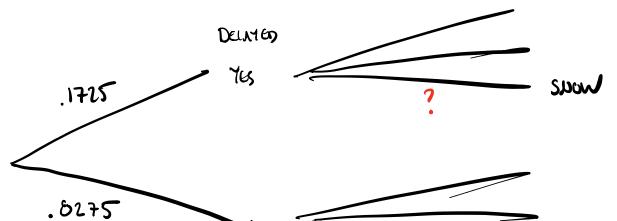
(d) Are the events "both children were born on the weekend" and "neither child was born on a Monday" mutually exclusive events?

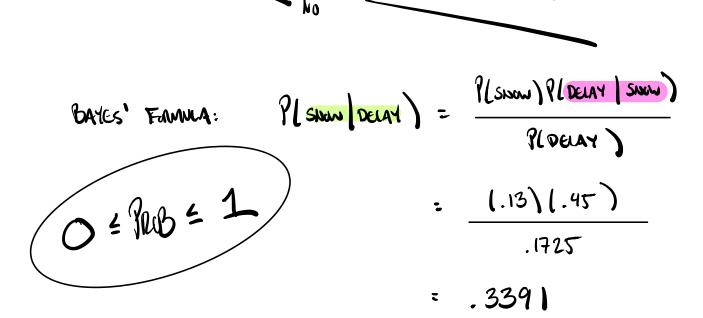
(b)


A = BUH WEEKEND


B= NETHER BOND ON MOD.


(c)
$$P(A) = \frac{4}{49}$$
 | Not equal => A,B and independent.
 $P(A|B) = \frac{4}{36}$


(d) Planb) = Pla) =
$$\frac{4}{49} \neq 0 \Rightarrow No.$$


- 7. When the weather is dry, the probability that your flight will be delayed is 10%. When is it raining, the probability that your flight will be delayed is 25%. When it is snowing, the probability that your flight will be delayed is 45%. Suppose the probability of rain is 18% and the probability of snow is 13%.
 - (a) What is the probability that your flight will be delayed?
 - (b) Suppose you are woken up by an alert that your flight is delayed, before you have a chance to check the weather. What is the probability that is snowing?

Module 8: Descriptive statistics (sections 10.1, 10.2, 10.3)

- Frequency table, histogram, pie chart
- Sigma notation
- Mean, median, mode
- Standard deviation
- 8. Calculate the following.

$$\sum_{k=2}^{6} \frac{5k+1}{2^k-1}$$

$$\frac{5(1)+1}{2^{2}-1}+\frac{5(3)+1}{2^{3}-1}+\frac{5(4)+1}{2^{4}-1}+\frac{5(7)+1}{2^{5}-1}+\frac{5(6)+1}{2^{6}-1}$$

9. A random sample of 6 bullfrogs were studied in their natural habitat, and the number of times that they croaked over a period of 15 minutes was recorded. This data is listed below.

$$35, 19, 26, 52, 26, 34$$
 (4)

Find the mean, median, mode, and standard deviation for the set of data.

MEAN
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{35 + 19 + ... + 34}{6} = \frac{192}{6} = 32$$

MEDAN 19 26 26 34 35 52
$$\frac{26+34}{2} = 30$$

MIDE: 26

S(AND. DEV.
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 $X_i - 32$
 $X_i - \bar{x} | (x_i - \bar{x})^2$
 $35 - 3 - 19 - 13 - 169$
 $26 - 6 - 6$
 $52 - 20 - 4000$
 $26 - 6 - 36$
 $24 - 2 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$
 $36 - 6$

= 11.4366