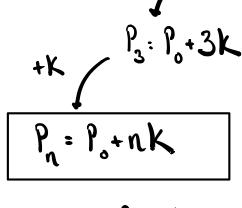
Module 3: Supre lixerest & Companyo lixerest

T-BILL MANNING VALUE \$2032 (50 DAY)
ANNUAL INTEREST PARE 3.886 % (ASSUME 360 DAY YEAR).

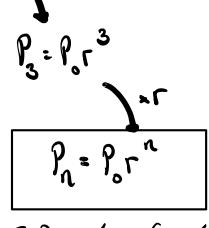
under 1 year: Defaux suble wichest


I =
$$Prt$$
 , $A = P + I$
 $A = P + Prt$
 $A = P(1 + rt)$
 $A = P(1 + rt)$
 $A = P + rt$
 $A = P + rt$

TIP: DO NOT ROUND UNTIL YOU ARRIVE AT THE FULL AUSWER!

LINEAR VS. EXPONENTIAL GROWTH:

SEQUENCE

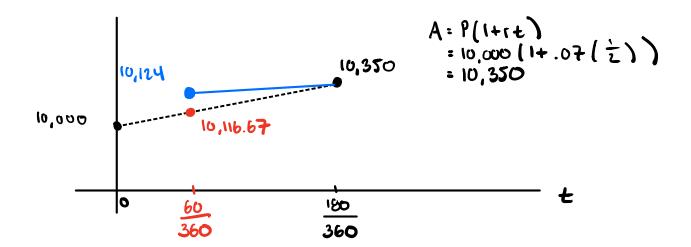

ABSOLUTE
$$\frac{1}{2}$$
 $P_1 = P_0 \cdot P_1$
 $P_2 = P_0 + 2K$
 $P_3 = P_0 \cdot P_3$
 $P_4 = P_0 \cdot P_3$
 $P_4 = P_0 \cdot P_3$
 $P_5 = P_0 \cdot P_3$
 $P_7 = P_0 \cdot P_3$
 $P_8 = P_0 \cdot P_3$
 P

LINEAR GROWTH

Accounts Earning Simple interest

EXPLUSITIAL GRUNTH

ACCOURTS GARNING COMPOUND WICHEST GROW EXPLUSIVALLY


1. Simple interest

Used by default for short-term loans/investments.

- I = interest
- P = principal
- r = annual interest rate (decimal)
- t = time (years)
- A = account balance/future value

$$\boxed{I = Prt} \qquad \boxed{A = P + I = P(1+r)t}$$

70. To complete the sale of a house, the seller accepts a 180-day note for \$10,000 at 7% simple interest. (Both interest and principal are repaid at the end of 180 days.) Wishing to use the money sooner for the purchase of another house, the seller sells the note to a third party for \$10,124 after 60 days. What annual interest rate will the third party receive for the investment?

$$A = 10,000 \left(1 + .07 \left(\frac{1}{6}\right)\right) = 10,116.67$$

TIME:
$$\frac{120}{360}$$
.

$$10,350 = 10,124 \left(1+r\left(\frac{120}{360}\right)\right)$$

$$\frac{10350}{10,124} = 1 + \frac{\Gamma}{3}$$

$$3\left(\frac{10350}{10,124}-1\right) = \Gamma = .066969$$

$$\Rightarrow .067 \qquad 6.7\%$$

2. Compound interest

- P = principal
- r = annual interest rate (decimal)
- n = number of compound periodsper year
- t = time (years)

- A = account balance/compoundamount
- r_E = effective rate/annual percentage yield (APY)

$$A = P\left(1 + \frac{r}{n}\right)^{nt} = P\left(1 + r_E\right)^t$$

$$r_E = \left(1 + \frac{r}{n}\right)^n - 1$$

$$r_E = \left(1 + \frac{r}{n}\right)^n - 1$$

A = P
$$\left(1 + \frac{\Gamma}{n}\right)^n$$
 | EXPONENT IN YEARS

IF t=1: EVERY YEAR,

MULTIPLIED BY

THIS IMMBER

$$E = \left(1 + \frac{\Gamma}{n}\right)^n - 1$$

$$2 - \frac{1}{4} = 2 + \frac{100}{2} = 100\% GROWTH.$$

66. A person with \$14,000 is trying to decide whether to pur-

chase a car now, or to invest the money at 6.5% compounded semiannually and then buy a more expensive car. How much will be available for the purchase of a car at the end of 3 years?

$$A = P(1 + \frac{1}{n})^{n+1} = 14000 \left(1 + \frac{.065}{2}\right)^{(2)(3)}$$

$$= \frac{15}{16961.66}$$

70. In a suburb, housing costs have been increasing at 5.2% per year compounded annually for the past 8 years. A house worth \$260,000 now would have had what value 8 years ago?

$$A = P(1 + \frac{1}{n})^{n+1} \rightarrow P = \frac{A}{(1 + \frac{1}{n})^{n+1}}$$

$$I = \frac{260,000}{(1 + \frac{.052}{1})^{(1)(E)}} = \frac{1}{173,319.50}$$

LUZANYHMS

ANOTHER WAY TO EXPRESS EXPONEUTION PELATIONS BEFOREN NUMBERS

3 = 9

Lay 9 = 2

"He is my father"

$$b^{\times} = a$$

Lay - Base - 3 of 9

(Exponersi)

is the # You would have b to IN CROSA TO ESCUAL Q.

ex. Log 8 = 3 (=> 2=8

 $| \int_{b^{\times} = a}^{b^{\times} = a} | \int_{b^{\times} = a}^{b^{\times} = a}$

CHANGE OF BASE FORMULA:

Log B = Log B

 $1.06^{\times} = 1.74 \iff \text{Lay} = X$ NOE OF BASE FOLKILL:

Lay a = x

For ANY C>0, C≠1.

e.j. Lay B = Lay B

Lay A

UN MOST CARC

لع ۽ لين،

75. You have saved \$7,000 toward the purchase of a car costing \$9,000. How long will the \$7,000 have to be invested at 9% compounded monthly to grow to \$9,000? (Round up to the next-higher month if not exact.)

$$A = P(1 + \frac{1}{n})^{nt}$$

 $9000 = 7000(1 + \frac{09}{12})^{12}t$

$$b^{\times} = \alpha$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$\frac{10075}{1.0075} = 12t$$

$$\frac{1}{1.0075}$$

$$\frac{1}{1.0075} = 12t$$

$$= 12t = 33.63...$$

$$-34 \text{ MONTIS}$$

on long on ANY LOYARIAM AT ALL

The buying and selling commission schedule shown in the table is from an online discount brokerage firm. Taking into consideration the buying and selling commissions in this schedule, find the annual compound rate of interest earned by each investment in Problems 95–98.

Transaction Size	Commission Rate
\$0-\$1,500	\$29 + 2.5% of principal
\$1,501-\$6,000	\$57 + 0.6% of principal
\$6,001-\$22,000	\$75 + 0.30% of principal
\$22,001-\$50,000	\$97 + 0.20% of principal
\$50,001-\$500,000	\$147 + 0.10% of principal
\$500,001+	\$247 + 0.08% of principal

- **97.** An investor purchases 200 shares of stock at \$28 per share, holds the stock for 4 years, and then sells the stock for \$55 a share.
- **98.** An investor purchases 400 shares of stock at \$48 per share, holds the stock for 6 years, and then sells the stock for \$147 a share.

Principal:
$$P = 200 \times 28 + 57 + .006 (5600)$$

$$8 = $5600$$

$$P = $5690.60$$

= \$10,892

$$\frac{10892}{5690.6} = (1+r)^4$$

$$\left[\frac{10892}{5690.6}\right]^{\frac{1}{4}} = \left[1+r\right]^{\frac{1}{4}}$$

$$\left[\frac{10892}{5690.6}\right]^{\frac{1}{4}} = 1+r$$

$$r = \left[\frac{10892}{5690.6}\right]^{\frac{1}{4}} - 1 = .1762168...$$

= 17.62 / ANNUAL WEST.