Finite Math, MATH 1100

Exercises review 2 (for the second midterm)

Solutions

1. (a) $26^4 = 456,976$

(b)
$$26 \cdot 25 \cdot 24 \cdot 23 = \boxed{358,800}$$

2. (a) $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = \boxed{120}$

(b)
$$4 \cdot 3 \cdot 2 \cdot 1 = \boxed{24}$$
.

3. (a) C(12,4) = 495.

(b)
$$C(9,4) = 126$$
.

(c) $C(9,4) + C(9,3) \cdot C(3,1) = 126 + 84 \cdot 3 = \boxed{378}$

(d)
$$P(12,4) = 12 \cdot 11 \cdot 10 \cdot 9 = \boxed{11,880}$$

4. (a) Using combinations: $\frac{C(26,2)}{C(52,2)} = \frac{325}{1,326} = \boxed{0.245}$. (Alternatively, using the general multiplication rule: $\frac{26}{52} \cdot \frac{25}{51} = 0.245$.)

(b)
$$\frac{C(12,1) \cdot C(40,1)}{C(52,2)} = \frac{12 \cdot 40}{1,326} = \boxed{0.36}$$

5.
$$\frac{C(2,1) \cdot C(11,2)}{C(13,3)} = \frac{2 \cdot 55}{286} = \boxed{0.385}$$
.

6. (a) There are 12 face cards in a standard deck. We have

$$p = P(\text{at least one face card}) = 1 - P(\text{no face cards}) = 1 - \frac{40}{52} \cdot \frac{39}{51} \cdot \frac{38}{50} = \boxed{0.553}.$$

(b) Let X be the number of times you win. Then X is a binomial random variable with N = 10 and p = 0.553. Therefore

$$P(X=6) = C(10,6)(0.553)^6 \cdot (1-0.553)^4 = 210 \cdot (0.553)^6 \cdot (1-0.553)^4 = \boxed{0.24}$$

7. (a) Let X denote the number of students who end up in the committee. Then X is binomial with N = 6 and p = 0.5. We want to find $P(1 \le X < 6)$. We can use the complement rule and obtain

$$P(1 \le X < 6) = 1 - P(X = 0) - P(X = 6).$$

We use binomial probability:

$$P(X = 0) = C(6,0) \cdot (0.5)^{0} \cdot (0.5)^{6} = 0.5^{6} = 0.015625.$$

$$P(X = 6) = C(6.6) \cdot (0.5)^6 \cdot (0.5)^0 = 0.5^6 = 0.015625.$$

Therefore

$$P(1 \le X < 6) = 1 - P(X = 0) - P(X = 6) = 1 - 2 \cdot 0.015625 = 0.96875 \approx \boxed{97\%}$$

1

(b) We have

$$P(X \ge 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1).$$

Using binomial probability:

$$P(X = 1) = C(6, 1) \cdot (0.5)^{1} \cdot (0.5)^{5} = 0.09375.$$

Therefore

$$P(X \ge 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1) = 1 - 0.015625 - 0.09375 = 0.890625 \approx 89\%$$

8. The possible values of X are \$0, \$5, \$10 and \$30. We have

$$P(X = 0) = P(\text{red card}) = \frac{26}{52} = 0.5.$$

$$P(X = 5) = P(\text{spade}) = \frac{13}{52} = 0.25.$$

$$P(X = 10) = P(\text{club, but not ace}) = \frac{12}{52} = 0.23.$$

$$P(X = 30) = P(\text{ace of clubs}) = \frac{1}{52} = 0.019.$$

The distribution of X is then given by

$$x_i$$
 | \$0 \$5 \$10 \$30 $P(X = x_i)$ | 0.5 0.25 0.23 0.019

The expected value of X is given by

$$E(X) = 0.0.5 + 5.0.25 + 10.0.23 + 30.0.019 = \boxed{\$4.12}$$

- 9. Binomial probability: each side has probability 1/4 = 0.25 to come up. The number of trials is n = 3.
 - (a) Let *X* be the number of *nuns*. Then

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (1 - 0.25)^3 = \boxed{0.58}$$

(b) Let *X* be the number of *nuns*. Then

$$P(X = 2) = C(3,2) \cdot 0.25^2 \cdot (1 - 0.25) = 3 \cdot 0.25^2 \cdot 0.75 = \boxed{0.14}$$

(c) Let *X* denote the number of *heis*. Then

$$P(X = 1) = C(3,1) \cdot 0.25 \cdot (1 - 0.25)^2 = 3 \cdot 0.25 \cdot 0.75^2 = \boxed{0.42}$$

(d) Let *X* denote the number of *gimels*. Then

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1 - P(X = 3) = 1 - 0.25^{3} = \boxed{0.98}$$

10. Let X denote the number of games won. Then X is binomial with p = 18/38. We have

$$Np \ge 10 \Longrightarrow N \cdot \frac{18}{38} \ge 10 \Longrightarrow N \ge \frac{38 \cdot 10}{18} = 21.11 \approx \boxed{21}.$$

11. Let *X* denote the number of question guessed correctly. Then *X* is binomial with N = 10 and p = 0.25. We have

$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1).$$

We compute each probability using the binomial formula:

$$P(X = 0) = C(10,0)0.25^{0} \cdot 0.75^{1}0 = 0.056.$$

$$P(X = 1) = C(10, 1)0.25^{1} \cdot 0.75^{9} = 0.1877.$$

It follows that

$$P(X \ge 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1) = 1 - 0.056 - 0.1877 = 0.7563 \approx \boxed{76\%}$$

12. The mean is given by

$$\overline{x} = \frac{9+13+17+22+26+34+42+45+53}{9} = \boxed{29}.$$

The median is 26

- 13. (a) The z-score is given by $\frac{83-77}{5} = 1.20$. The area to the left of 1.20 is given by 0.88493, therefore the area to the right is given by $1-0.88493 \approx \boxed{11.5\%}$.
 - (b) We want the find the 10^{th} percentile. The corresponding z-score is given by $z_0 = -1.28$. It follows that

$$\frac{x_0 - 77}{5} = -1.28 \Longrightarrow x_0 = 77 - 5 \cdot 1.28 = 70.6.$$

Therefore the coldest days are $\boxed{70.6^{\circ}F}$ or lower.

- 14. (a) We want to find the area to the left of $x_0 = 0$. The z-score is given by $z_0 = \frac{0 0.147}{0.33} = -0.45$. The area to the left is then given by $0.32636 \approx \boxed{33\%}$.
 - (b) We want to find the 85^{th} percentile. From the table, we have that the z-score corresponding to the 85^{th} percentile is $z_0 = 1.04$. It follows that

$$\frac{x_0 - 0.147}{0.33} = 1.04 \Longrightarrow x_0 = 0.4902 \approx \boxed{49\%}.$$

- 15. (a) The z-score is given by $z_0 = \frac{48-55}{6} = -1.17$. The area to the left of -1.17 is then given by $0.12100 = \boxed{12.1\%}$.
 - (b) The z-score of 65 is given by $z_{65} = \frac{65-55}{6} = 1.67$. The area to the left of 1.67 is given by 0.9525. The z-score of 60 is given by $z_{60} = \frac{60-55}{6} = 0.83$. The area to the left of 0.83 is given by 0.79673. It follows that the area between 60 and 65 is given by 0.9525 0.79673 = 0.1558 $\approx 15.6\%$.
 - (c) The z-score corresponding to the 90^{th} percentile is $z_0 = 1.28$. Therefore

$$\frac{x_0 - 55}{6} = 1.28 \Longrightarrow x_0 = \boxed{62.68}^{\circ}$$
.

- (d) The z-score is given by $z_0 = \frac{54-55}{6} = -0.17$. The area to the left of -0.17 is given by $0.43251 \approx \boxed{43\%}$.
- 16. The z-score is given by $\frac{70-72.6}{4.78} = -0.54$. The area to the left is given by 0.29460. It follows that the area to the right of 70 is given by $1-0.29460 = 0.7054 \approx \boxed{70.5\%}$.
- 17. (a) The z-score is $z_0 = -1.64$. The corresponding time is given by

$$\frac{x_0 - 4{,}313}{583} = -1.64 \Longrightarrow x_0 = 4{,}313 - 1.64 \cdot 583 = 3{,}356.88 \approx \boxed{3{,}357}.$$

(b) The z-score is is $z_0 = 1.28$. The actual value x_0 is given by

$$\frac{x_0 - 5,261}{807} = 1.28 \Longrightarrow x_0 = 5,261 + 1.28 \cdot 807 = 6,293.96 \approx \boxed{6,294}.$$

18. We have that the value $x_0 = 1,800$ is the 75th percentile of the distribution. The corresponding z-score z_0 is given by $z_0 = 0.68$. It follows that

$$\frac{1,800-1,650}{\sigma} = 0.68 \Longrightarrow \sigma = \frac{150}{0.68} = [\$220.6].$$