Fordham University Math 1100-L12 Finite Mathematics

8.5 Probability Distributions and Expected Value

Example/Discussion Problems

Random Variable
A random variable is a function that assigns a real number to each outcome of an

experiment.

1. An experiment consists of rolling two fair 6-sided dice.

e The first die has its faces labeled 1, 3, 3, 5, 5, 5.
e The second die has its faces labeled 2, 2, 2, 4, 4, 6.

Define the random varible X and Y as follows.

e 1 = sum of faces rolled

¢ y = non-negative difference of faces rolled

For each random variable, create a table that lists its possible values and the correspond-
ing probabilities that the random variable equals these values.

PI’ObabI|It)’ Distribution A table that lists the possible values of a random vari-

able, together with the corresponding probabilities, is called a probability distribution.

Note 1. If a random variable has n possible values z1, x9, . .., z, then
p(z1) +p(z2) + ... +p(wy) = 1.

Note 2. When a random variable has only a finite number of possble values, a prob-
ability distribution is a function that assigns a probability to every possible value of
the random variable. In this case, a probability distribution is also called a probability
distribution function, or simply a probability function.

2. Three batteries are randomly selected from a drawer that contains 12 new batteries and
6 old batteries. Define the random variable x to be the number of new batteries selected.
Describe the probability distribution with a table and a histogram. Round all probabili-
ties to 4 decimal places.
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3. Suppose the experiment in example 2 is repeated 10,000 times. How many times would
you expect to select z = 0 new batteries? x = 1? x = 2? 2 = 3? Using these values, what
would be the average number of new batteries selected over all 10,000 repititions of the
experiment?

Expected Value

Suppose the random variable x can take on the n values x;, x,, X3, ..., X,. Also, suppose
the probabilities that these values occur are, respectively, p;, ps, ps,..., p,- Then the
expected value of the random variable is

E(x) =xipy + x2p, + x3p3 + -+ + x,p,

4. A school raises money by selling 2,500 raffle tickets for $10 each. After selling all of the
tickets, 6 tickets ae chosen randomly to receive prizes: 3 tickets win $500 each, 2 tickets
win $1,000 each, and one tickets wins $5,000. Define the random variable = to be the
amount of money won/lost by purchasing one raffle ticket.

z = money in — money out

What is the expected value of z?

5. In any given calendar year, a factory worker has a 0.6% chance of becoming disabled on
the job and unable to work. Thus, a labor union offers factory workers a 1-year disability
isnsurance policy such that workers who purchase the policy and experience a workplace
disability receive a one-time payment of $250,000. If the labor union simply wants to
break even, how much should they charge for this policy?

6. Suppose 68% of americans own a car. If 3 american are randomly selected and z is the
number that own a car, find the expected value for z.

Expected Value for Binomial Probability
For binomial probability, E(x) = np. In other words, the expected number of successes
is the number of trials times the probability of success in each trial.
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Random Variable

A random variable is a function that assigns a real number to each outcome of an
experiment.

1. An experiment consists of rolling two fair 6-sided dice.

e The first die has its faces labeled 1, 3, 3, 5, 5, 5.
e The second die has its faces labeled 2, 2, 2, 4, 4, 6.

Define the random varible X and Y as follows.

e 1 = sum of faces rolled

e y =non-negative difference of faces rolled

For each random variable, create a table that lists its possible values and the correspond-
ing probabilities that the random variable equals these values.
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PI’ObabI|Ity DiStribution A table that lists the possible values of a random vari-

able, together with the corresponding probabilities, is called a probability distribution.

Note 1. If a random variable has n possible values z1, z2, . .., z, then

p(z1) +p(x2) + ...+ plen) = 1.

Note 2. When a random variable has only a finite number of possble values, a prob-
ability distribution is a function that assigns a probability to every possible value of
the random variable. In this case, a probability distribution is also called a probability
distribution function, or simply a probability function.

2. Three batteries are randomly selected from a drawer that contains 12 new: batteries and
6 old batteries. Define the random variable  to.be the number of new-batteries selected.
Describe the probability distribution with a table and a histogram. Round all probabili-
ties to 4 decimal places.
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3. Suppose the experiment in example 2 is repeated 10,000 times. How many times would
you expect to select z = 0 new batteries? x = 1? = = 2? x = 3? Using these values, what
would be the average number of new batteries selected over all 10,000 repititions of the

experiment?
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Expected Value

Suppose the random variable x can take on the n values x;, x,, x3,..
the probabilities that these values occur are, respectively, p;, p2, P3,---, P,- Then the

expected value of the random variable is

., X,. Also, suppose

E(x) =x,p1 + x,p, + x3p3 + -+ +x,p,
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4. A school raises money by selling 2,500 raffle tickets for $10 each. After selling all of the
tickets, 6 tickets ae chosen randomly to receive prizes: 3 tickets win $500 each, 2 tickets
win $1,000 each, and one tickets wins $5,000. Define the random variable x to be the
amount of money won/lost by purchasing one raffle ticket.

T = money in — money out

What is the expected value of x?
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5. In any given calendar year, a factory worker has a 0.6% chance of becoming disabled on
the job and unable to work. Thus, a labor union offers factory workers a 1-year disability
isnsurance policy such that workers who purchase the policy and experience a workplace
disability receive a one-time payment of $250,000. If the labor union simply wants to
break even, how much should they charge for this policy?
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6. Suppose 68% of americans own a car. If 3 american are randomly selected and =z is the
number that own a car, find the expected value for z.
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Expected Value for Binomial Probability
For binomial probability, E(x) = np. In other words, the expected number of successes
is the number of trials times the probability of success in each trial.
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